Evolutionary Model Type Selection for Global Surrogate Modeling

نویسندگان

  • Dirk Gorissen
  • Tom Dhaene
  • Filip De Turck
چکیده

Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist (Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm (heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate-Based Optimization

Surrogate-based optimization (Queipo et al. 2005, Simpson et al. 2008) represents a class of optimization methodologies that make use of surrogate modeling techniques to quickly find the local or global optima. It provides us a novel optimization framework in which the conventional optimization algorithms, e.g. gradient-based or evolutionary algorithms are used for sub-optimization(s). Surrogat...

متن کامل

Evolutionary Regression Modeling with Active Learning: An Application to Rainfall Runoff Modeling

Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. However, due to the computational cost of these high fidelity simulations, the use of neural networks, kernel methods, and other surrogate modeling techniques has become indispensable. Surrogate models are com...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Mixture surrogate models based on Dempster-Shafer theory for global optimization problems

Recent research in algorithms for solving global optimization problems using response surface methodology has shown that it is in general not possible to use one surrogate model for solving different kinds of problems. In this paper the approach of applying Dempster-Shafer theory to surrogate model selection and their combination is described. Various conflict redistribution rules have been exa...

متن کامل

An application of a GA with Markov network surrogate to feature selection

Surrogate models of fitness have been presented as a way of reducing the number of fitness evaluations required by evolutionary algorithms. This is of particular interest with expensive fitness functions where the time taken for building the model is outweighed by the saving of using fewer function evaluations. In this paper, we show how a Markov network model can be used as a surrogate fitness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009